
05

CIÊNCIA DOS MATERIAIS

Engenharia Mecânica - Uninove Prof. Luis Fernando

Difusão

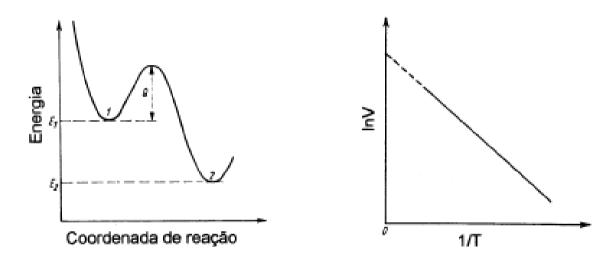
Processos termicamente ativados

Numerosos fenômenos em ciência dos materiais ocorrem mais rapidamente quando a temperatura é aumentada. Em muitos casos, a dependência da velocidade de reação ou transformação (V) segue uma equação do tipo Arrhenius (1859-1927):

$$V = c \exp\left(\frac{-Q}{RT}\right)$$

onde:

Vé a velocidade da reação ou transformação;


c é uma constante;

Q é a energia de ativação;

R é a constante dos gases e

Té a temperatura absoluta.

Difusão

Figura 8.1 — (a) Representação esquemática de um processo termicamente ativado. (b) Apresentação da equação de Arrhenius em escalas convenientes.

Difusão

Autodifusão (difusão de um elemento em seu próprio reticulado)

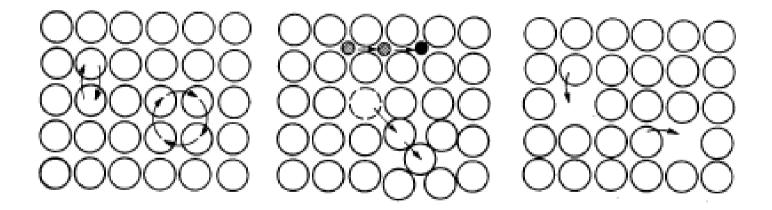


Figura 8.2 — Mecanismos de difusão em um metal.

Difusão

Difusão em soluções sólidas substitucionais

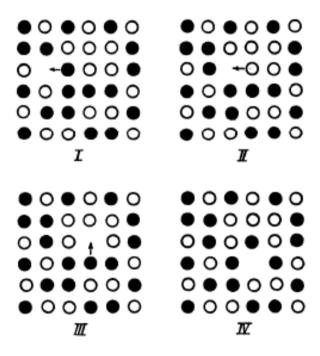


Figura 8.3 — Mecanismo de difusão em uma solução sólida por troca de lugar com lacuras.

Difusão

Difusão em soluções sólidas intersticiais

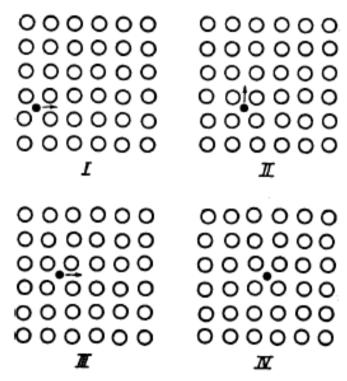
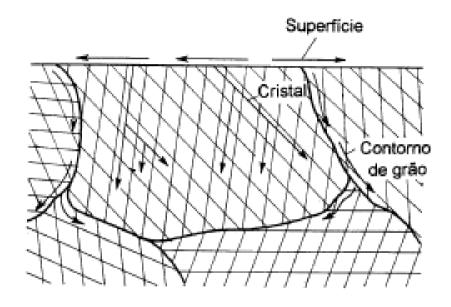



Figura 8.4 — Mecanismo de difusão intersticial.

Difusão

Difusão através de defeitos cristalinos

Figura 8.6 — Representação esquemática da difusão no reticulado e ao longo de defeitos.

1^a Lei de Fick

O fluxo $(J, \text{ em kg/m}^2\text{s})$ de matéria (M, em kg) que se difunde através de uma unidade de área $(A, \text{ em m}^2)$ na unidade de tempo (I, em s) é definido como:

$$J = \frac{M}{At}$$
; ou na forma diferencial como $J = \frac{1}{A} \left(\frac{dM}{dt} \right)$.

1ª Lei de Fick

O fluxo $(J, \text{ em kg/m}^2\text{s})$ de matéria (M, em kg) que se difunde através de uma unidade de área $(A, \text{ em m}^2)$ na unidade de tempo (I, em s) é definido como:

$$J = \frac{M}{At}$$
; on a forma differencial como $J = \frac{1}{A} \left(\frac{dM}{dt} \right)$.

Válida para condições estacionárias

1ª Lei de Fick

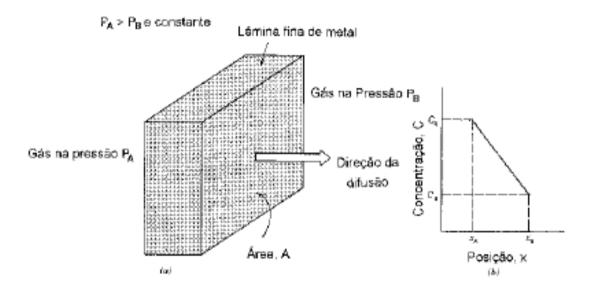


Figura 8.6 — (a) Difusão em estado estacionário através de uma placa. (b) Perfil linear de concentração na placa.

1ª Lei de Fick

A primeira lei de Fich define o fluxo J_x através da placa como sendo:

$$J_x = -D\left(\frac{\mathrm{d}C}{\mathrm{d}x}\right)$$

O gradiente de concentração dC/dx é neste caso igual a

$$\frac{C_A - C_B}{X_A - X_B}$$

A constante de proporcionalidade D é denominada coeficiente de difusão e sua unidade é m^2/s .

1^a Lei de Fick

O coeficiente de difusão

O coeficiente de difusão ou difusividade D da maioria dos materiais obedece a equação de Arrhenius:

$$D = D_o \exp\left(\frac{-Q}{RT}\right)$$

onde

 D_0 é o fator pré-exponencial independente da temperatura (m²/s);

Q é a energia de ativação para difusão (J/mol; cal/mol ou eV/átomo);

Réa constante dos gases (8,31 J/mol K; 1,987 cal/mol K ou 8,62 10° eV/átomo) e

Té a temperatura absoluta (K).

Coeficientes de difusão

Espécie Difusível	Metal Hospedeiro	Do (m²/s)	Energia de ativação Qd		Valores calculados	
			kJ/mol	eV/átomo	T (°C)	D (m²/s)
Fe	Fe-α	2,8.10-4	251	2,60	500	3,0.10-21
	(CCC)				900	1,8.10 ⁻¹⁵
Fe	Fe-γ	5,0.10-5	284	2,94	900	1,1.10 ⁻¹⁷
	(CFC)				1100	7,8.10 ⁻¹⁶
С	Fe-α	6,2.10 ⁻⁷	80	0,83	500	2,4.10-12
					900	1,7.10 ⁻¹⁰
С	Fe-γ	2,3.10-5	148	1,53	900	5,9.10 ¹²
					1100	5,3.10-11
a	Б	7,8.10 -5	211	2,19	500	4,2.10 ⁻¹⁹
Zn	Б	2,4.10-5	189	1,96	500	4,0.10-18
Al	Al	2,3.10-4	144	1,49	500	4,2.10-14
a	Al	6,5.10-5	136	1,41	500	4,1.10-14
Mg	Al	1,2.10-4	131	1,35	500	1,9.10 ⁻¹³
Qu .	Ni	2,7.10-5	256	2,65	500	1,3.10-22

Coeficientes de difusão

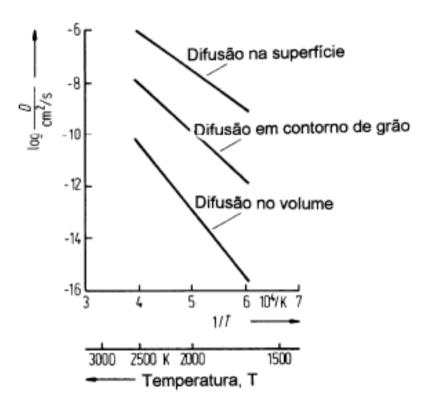
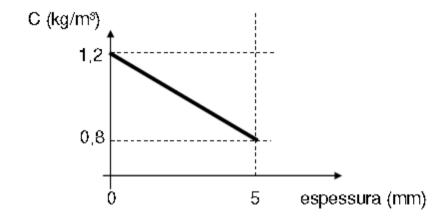



Figura 8.11 — Coeficientes de difusão do tório no tungstênio.

Exercício

Uma placa de ferro α com 5 mm de espessura, sob 700°C, é exposta numa das faces a uma atmosfera rica em carbono (chamada carbonetante) que lhe garante uma concentração de 1,2 kg/m³ de carbono nesta face. Sua face oposta é mantida sob atmosfera descarbonetante, que mantém a concentração de carbono desta em 0,8 kg/m³. O perfil de composições de carbono entre as faces é linear. Considerando-se atingido um estado constante de difusão, qual o fluxo de carbono pela placa?

Exercício

Primeiro, deve-se calcular o coeficiente de difusão do carbono no Fe- α a 700°C.

$$D = D_0 \times e^{\frac{-Q_D}{R.T}}$$

$$D_{C \to Fe-\alpha} = 6, 2.10^{-7} \times e^{\frac{-80000}{8,31.(700+273)}} = 3, 1.10^{-11} \frac{m^2}{s}$$

Exercício

Segundo, calcula-se o fluxo de difusão.

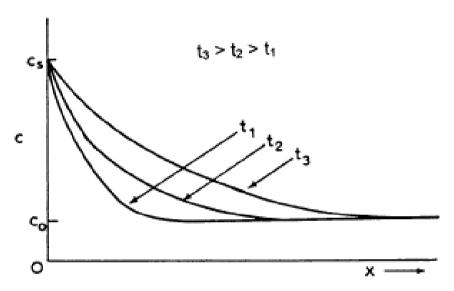
$$J = -D \times \frac{dC}{dx}$$

$$J = -3.1.10^{-11} \times \frac{1.2 - 0.8}{(0 - 5).10^{-3}} = 2.5.10^{-9} \frac{kg}{m^2.s}$$

2ª Lei de Fick

Na maioria dos casos, a difusão não ocorre em condições estacionárias mas sim em condições transitórias. Em outras palavras, o perfil de concentração não é constante e varia com o tempo, conforme ilustra a figura 8.7.

Para as condições da figura 8.7, vale a seguinte equação:


$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right)$$

Se considerarmos o coeficiente de difusão D independente da composição, a expressão acima se transforma em:

$$\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2}\right)$$

A equação acima é conhecida como segunda lei de Fick.

2ª Lei de Fick

Figura 8.7 — Perfis de concentração para condições transitórias.